Praxisbeispiel Metallrente: Kosten fressen die halbe Rendite

Der 24jährige Freund meiner Enkeltochter, geboren im März 1990, ist in einer Maschinenfabrik angestellt und hat somit Anspruch auf den Abschluss der sogenannten Metallrente. Da er sich jedoch zuvor noch nicht damit beschäftigt hatte, kam er mit ein paar grundlegenden Fragen zu mir.

Frage: Wie rechnet sich mein Vertrag, den ich am 15.10.2012 abgeschlossen habe?

Antwort: Du zahlst monatlich einen Betrag in die betriebliche Altersversorgung (bAV) ein, der maximal Steuer- und sozialversicherungsfrei aufgewendet werden kann. Das sind bei dir 224€. Zudem hast du die chancenorientierte Variante einer fondsbasierten Versicherung gewählt, weil du bis zum Renteneintrittsalter (67 Jahre) noch viel Zeit hast. Vorübergehende Wertschwankungen tangieren dich bei dieser langen Laufzeit nicht. Diese kannst du einfach „aussitzen“, wie man im Börsenjargon sagt. Dafür kannst du aber auch von einer um „einpaar Prozent“ höheren Rendite ausgehen, als wenn du die mit einer absoluten Garantie ausgestattete klassische Rentenversicherung gewählt hättest. Diese garantiert zur Zeit noch eine Verzinsung von 1,75% auf die Beiträge, nachdem diese zuvor um die Kosten der Versicherung gekürzt wurden. 

Frage: Gut, dass du die Kosten der Versicherung ansprichst. Haben diese eine Auswirkung auf meine ausgezahlte Rente bzw. auf die am Ende ggf. in einer Summe auszahlbare Gesamtleistung?

Antwort: Ja, sie haben sogar eine sehr große Auswirkung. Nachdem gesetzlich vorgesehenen sog. „Produktinformationsblatt“ verrechnet die Versicherung bei einer angenommenen Rendite in der Fondsanlage von 6% eine Kostenquote von 1,83%, d.h. die Nettorendite beträgt für dich 4,17% p.a..

Nachstehend die absoluten Zahlen:

Rechnerischer Ablaufwert der Fondsanlage bei einer Rendite von 6% p.a.         572.399€

Voraussichtlicher Ablaufwert laut Versicherung (Rendite 4,17% p.a.)                  323.347€

Minderung infolge der Kostenquote des Versicherers von 1,83% p.a.                 249.052€

Mindestgarantie des Versicherers -Summe der Beiträge-                                    119.616€

Frage: Das ist ja fast unglaublich! Wäre es dann nicht besser gewesen, einen direkten Fondssparvertrag abzuschließen und auf die staatlichen Förderungen zu verzichten?

Antwort: Nein. Du musst bedenken, dass du von dem Beitrag in Höhe von 224€ etwa nur die Hälfte selbst zahlst. Auf deinen Eigenanteil bezogen erhöht sich dadurch die Rendite rechnerisch von 4,17% auf 6,14% p.a., die als akzeptabel erscheint. Nun weiß man allerdings nicht, welche Rendite die von der Versicherung unterlegte Fondsanlage letztlich abwirft. Nach dem Produktinformationsblatt können es auch 8% oder 10% sein, wobei die Kostenquote der Versicherung dann auf 1,86% bzw. 1,90% ansteigen würde – warum auch immer.

Frage: Braucht man überhaupt die Beitragsgarantie der Versicherung?

Antwort: Eigentlich nicht! Nach den jahrzehntelangen Erfahrungen bei guten Fondanlagen mit Renditen zwischen 9% und 11% p.a. und in Anbetracht gesetzlich geschützten Sondervermögens ist eine Garantie faktisch entbehrlich. Da die Politik diese dennoch durchgesetzt hat, spricht das für den finanziellen Analphabetismus, der offenbar auch dort verbreitet ist. Das Fatale ist aber, dass die Garantie etwa die halbe Rendite kostet (http://www.frankfurt-school.de/clicnetclm/fileDownload.do?goid=000000053106AB4). 

Frage: Und was passiert mit dem Wert meines Ersparten, wenn man nun noch die Inflation berücksichtigt?

Antwort: Vor der Inflation kann keiner die Augen verschließen, denn sie ist real. Die Europäische Zentralbank gibt einen Satz von ca. 2% vor. Tatsächlich aber hat sie in der längerfristigen Vergangenheit zwischen 2,5% und 3% gelegen und jeder tut gut daran, eher mit 3% zu rechnen, um am Ende auf der sicheren Seite zu stehen. Eine einfache Berechnung kann jeder mit der Anwendung eines kleinen Tricks selbst vornehmen: Nach der 72-Regel halbiert sich ein Kapital etwa alle 24 Jahre (72:3=24)

Im Beispielfall:

Ablaufwert der Versicherung nominal                323.247€

nach 24 Jahren Halbierung auf ca.                    160.000€

nach weiteren 24 Jahren Halbierung auf ca.       80.000€

Da die Laufzeit in diesem Fall nicht 48, sondern 45 Jahre beträgt, wird der reale Ablaufwert etwa 100.000€ ausmachen, d.h. man kann in 45 Jahren für 320.000€ noch gerade Waren im Wert von heute 100.000€ kaufen.

Beurteile selbst, ob dieser Betrag dann ausreicht, deine mit Sicherheit zu erwartende Rentenlücke wirksam zu füllen.

Check Also

Euro stockphoto 1280

Wertentwicklung eines Euro über die Zeit – mit Zins und Zinseszins

Diese ausdruckbare Kapitalendwerte-Tabelle illustriert eindrucksvoll, wie sich ein einmalig angelegter Euro bei unterschiedlichen Zinssätzen über …

Schreibe einen Kommentar